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The Rössler Attractor

5. NUMERICAL METHODS

5.0
INTRODUCTION

One of the most important tasks in a study of dynamical systems is the numerical calculation of the trajectories. Thus far we have considered the integration method to be a black box into which we pop the system, initial conditions, method and time range and out pops a plot of the trajectories. Although this approach is common in courses on dynamical systems it obscures many of the pitfalls of numerical integration.

 It is not possible at the present state of the art to choose a ‘best’ algorithm for the calculation of trajectories. There are several types of numerical algorithm, each with their own advantages and disadvantages. We shall consider a class of methods known as discrete variable methods. These methods approximate the continuous time dynamical system by a discrete time system. This means that we are not really simulating the continuous system but a discrete system which may have different dynamical properties. This is an extremely important point.

The discrete variable methods which we consider fall into two main types, Runge-Kutta methods and Linear Multistep methods. Maple has implementations of both types of method as well as a number of more sophisticated techniques designed to overcome some of the pitfalls of numerical solution. The more sophisticated methods still fall into the discrete variable category.

5.1
TYPES OF METHOD
 Although the dynamical systems which we are simulating are usually in more than one dimension we can, without loss,  restrict our numercal anlaysis of the methods to the single non-autonomous differential equation
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subject to the initial condition 
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. We shall usually refer to the differential equation together with the initial condition as an initial value problem (IVP). Discrete variable methods yield a series of approximations
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on the set of points
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where h is the stepsize.

Taylor Series Method

These methods are based on the Taylor series expansion
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If the series is truncated and 
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 is replaced by the approximation 
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 we obtain the Taylor Series Method of order p
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where 
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Although there is an implementation of this method in Maple it is not much used in practice due to the necessity of computing the higher order derivatives of X. We shall only use it as a reference method when discussing the accuracy of other methods.

Runge-Kutta Methods

 These methods are based on the notion of finding a formula which agrees with the Taylor series as closely as possible without involving derivatives. For example consider the possibility of matching the second order Taylor series method
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by using a formula of the form
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where
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The equivalent Taylor series expression to 
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Expanding 
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Comparing the two expressions we see that
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resulting in the family of solutions
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where 
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 is a free parameter. For 
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and for 
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 the modified Euler method
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Unfortunately the terminology for naming second order Runge-Kutta methods is not standardised and Maple calls the improved Euler method the Heun formula and the modified Euler method the improved polygon method. 

The procedure above can be extended to give higher order methods such as the

classical 4th order method
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Linear Multistep Methods

These methods are based on integration of an interpolating polynomial having the values 
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Using linear interpolation in the interval we have
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Integrating gives
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This leads to the Trapezoidal method
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The general form of these methods is
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where 
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The main methods of this type which we shall consider are:

Adams-Bashforth

These methods are explicit with methods of order k being k-step. Methods of order from one to three have the formulae
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The first order method is more normally called the Euler method.

Adams-Moulton

These methods are implicit with methods of order k being 
[image: image46.wmf]k
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-step. Methods of order from one to three have the formulae
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The first order method is called the backward Euler formula and the second order method is the Trapezoidal method.  

Gear Methods

These methods are implicit with methods of order k being k-step. Methods of order from one to three have the formulae
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The first order method is again the backward Euler formula.  

5.2
MAPLE IMPLEMENTATION
 Maple contains a large range of numerical procedures for integrating non-autonomous dynamical systems of the type
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All of these procedures are invoked using the Maple dsolve command with the numeric option. The syntax for the command is



dsolve(deqns, vars, type=numeric, options)

where deqns defines the system of differential equations and initial values, vars defines the dependent and independent variables, type=numeric tells Maple to use a numerical algorithm and options allows a choice of method, stepsize and other options associated with the method. The default method is a Fehlberg fourth-fifth order Runge-Kutta method. 

· Worked Example 1 - Van der Pol Equation

As an example consider the solution of the Van der Pol equation written as the first order system
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> epsilon:=10:

> ivp := {diff(x(t),t)=y(t),diff(y(t),t)=-x(t)+epsilon*(1-x(t)^2)*y(t),



x(0)=0,y(0)=0.5}:

> fcns := {x(t), y(t)}:

This defines the initial value problem. Now we invoke dsolve

> p1:= dsolve(ivp,fcns,type=numeric);




 EMBED Word.Picture.8  


Note that the output from the dsolve command is a procedure. In order to find the numerical solution we need to evaluate the procedure at the appropriate value of t. 

> p1(10);




 EMBED Word.Picture.8  


We can us the Maple odeplot command to graph the solution. This command is in the plots package so this has to be loaded first.

> with(plots):

Now we can plot the solution in various ways. Firstly here is a plot of the solution components v t over the range [0,20]. numpoints controls the number of plotted points which needs to be relatively high here to obtain a realistic plot.

> odeplot(p1,[[t,x(t)],[t,y(t)]],0..20, numpoints=500);
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It is also possible to obtain a phase plot

> odeplot(p1,[[x(t),y(t)]],0..20, numpoints=500);

[image: image52.wmf]
and a three dimensional plot

> odeplot(p1,[[t,x(t),y(t)]],0..20, numpoints=500);
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Classical Methods

Maple contains a number of one-step methods for the numerical solution of initial value problems. These are referred to as classical methods and are invoked by including the option method=classical[type] in the call to dsolve. Here type can be one of

foreuler
the forward Euler method; 

heunform
the Heun formula (also known as the trapezoidal rule, or the improved Euler method);

impoly 
the improved polygon method (also known as the modified 



Euler method);

rk2 
the second-order classical Runge-Kutta method; 

rk3 
the third-order classical Runge-Kutta method; 

rk4 
the fourth-order classical Runge-Kutta method; 

adambash
the Adams-Bashford method (a "predictor" method);

abmoulton
the Adams-Bashford-Moulton method (a "predictor-




corrector" method). 

If no type is specified the forward Euler method is used.

· Worked Example 2 - The Forward Euler Method

Consider the IVP
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We can define this in Maple as

> ivp:={diff(y(x),x)=-2*x*y(x)^2,y(0)=1}:

In this case Maple can find the exact solution using dsolve

> Exactsoln:=rhs(dsolve(ivp,y(x)));




 EMBED Word.Picture.8  


Now we use Euler's method to obtain the numerical solution. Note that this method like all the other methods of type classical uses a fixed stepsize which we provide. 

> es0:=dsolve(ivp,y(x),type=numeric,



method=classical[foreuler],stepsize=0.001):

Thus we can find the solution at 
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> es0(0.4);




 EMBED Word.Picture.8  


and plot the solution for a range of values of x
> odeplot(es0,[x,y(x)],0..6,labels=[x,y]);
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Now often we want to investigate how the solution behaves for differing values of the stepsize h. In order to do this we can define a different version of the function for the numerical solution which uses the stepsize as one of the input parameters

> es1:=h->dsolve(ivp,y(x),type=numeric,



method=classical[foreuler],stepsize=h):

Thus we can obtain the solution for different stepsizes

> es1(0.001)(0.4);




 EMBED Word.Picture.8  


> es1(0.01)(0.4);




 EMBED Word.Picture.8  


We can compare the solution at different stepsizes by constructing a table of values as follows:

Firstly define the output points

> x:=k->k*0.1:

Now define a function which finds the approximate solution at a given output point

> EulerSoln:=(x,h)->rhs(es1(h)(x)[2]):

Define the exact solution

> ExactSoln:=x->1/(1+x^2);
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Construct an array whose elements compare the exact solution to the numerical solution for three different stepsizes. 

> mm:=array(1..8,1..5):

 mm[1,1]:=`x(k)`:mm[1,2]:=`Exactsoln`:mm[1,3]:=`h=0.1`:

mm[1,4]:=`h=0.01`:mm[1,5]:=`h=0.001`:

for i from 2 to 8 do

 
mm[i,1]:=0.1*(i-2):

 
mm[i,2]:=evalf(ExactSoln(x(i-2)),5):

 
for j from 3 to 5 do

 

mm[i,j]:=evalf(EulerSoln(x(i-2),10^(-j+2)),5)

 
od:

od:

> eval(mm);
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Another possibility is to compare the errors at each stepsize. Firstly define a function giving the error

> err:=(x,h)->ExactSoln(x)-EulerSoln(x,h):

> tt:=array(1..8,1..4):

tt[1,1]:=`x(k)`:tt[1,2]:=`h=0.1`:tt[1,3]:=`h=0.01`:tt[1,4]:=`h=0.001`:

 for i from 2 to 8 do


tt[i,1]:=0.1*(i-2);


for j from 2 to 4 do



tt[i,j]:=evalf(err(x(i-2),10^(-j+1)),5);


od:

od:

> eval(tt);

           

 EMBED Word.Picture.8  


· Worked Example 3 - The Classical Second Order Runge-Kutta Method

Consider the solution of the IVP 
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> IVP:={diff(y(x),x)=-4*y(x)+4*x,y(0)=1}:

The exact solution is given by

> dsolve(IVP,y(x));
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Use the 2nd order classical Runge-Kutta method

> rk2:=h->dsolve(IVP,y(x),type=numeric,method=classical[rk2],stepsize=h):

> x:=k->k*0.5:

> RK2Soln:=(x,h)->rhs(rk2(h)(x)[2]):

> ExactSoln:=x->x-1/4+5/4*exp(-4*x);
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> mm:=array(1..10,1..5):

 mm[1,1]:=`x(k)`:mm[1,2]:=`Exactsoln`:mm[1,3]:=`h=0.25`:

mm[1,4]:=`h=0.5`:mm[1,5]:=`h=0.75`:

for i from 2 to 10 do

 
mm[i,1]:=0.5*(i-2):

 
mm[i,2]:=evalf(ExactSoln(x(i-2)),5):

 
for j from 3 to 5 do mm[i,j]:=evalf(RK2Soln(x(i-2),0.25*(j-2)),5) od;

od:

> eval(nm); 
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Note that as the stepsize is increased the numerical solution fails to represent the exact solution accurately. Indeed for a stepsize of 0.75 the numerical solution 'blows up'. This is due to non-convergence as a result of the numerical method becoming unstable. We shall consider this phenomenon next.

Exercises 1

1.
Use the classical numerical methods foreuler, heunform, rk3, rk4 and adambash to attempt to obtain a numerical solution of the IVPs
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(b)
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Use a range of stepsizes in the interval [0,1]. At what approximate value of the stepsize do the methods become unstable. 

2.
Use each of the methods above to solve the systems of differential equations


(a)
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(b)
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where 
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 is a parameter. (Try 
[image: image63.wmf]e

=

0

5

1

5

10

.

,

,

,

).


(c)
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In each case use odeplot to obtain time series and phase plots.

5.3 
LOCAL AND GLOBAL ERRORS

The output of a discrete variable method is a set of points 
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and the output of the dynamical system is a continuous trajectory 
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. For the numerical results to provide a good approximation to the trajectory we require that the difference
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where 
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 is some defined error tolerance, at each solution point. This difference is called the global error and is the accumulated error over all solution steps. Unfortunately it is extremely difficult to accomplish this and we have to confine ourselves to controlling the local error 
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at each step where 
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 is the numerical solution obtained on the assumption that the numerical solution at the previous solution point is exact.

There are two sources of local error,the roundoff  error and the truncation error.

Roundoff Error

The roundoff error is the error which arises from the fact that numerical methods are implemented on digital computers which only calculate results to a fixed precision which is dependent on the computer system used. Note that since roundoff errors depend only on the number and type of arithmetic operations per step and is thus independent of the integration stepsize h.

Truncation Error

The truncation error of a numerical method results from the approximation of a continuous dynamical system by a discrete one. The truncation error is machine independent, depending only on the algorithm used and the stepsize h.

An important concept in the analysis of the truncation error is that of consistency. Basically consistency requires that the discrete variable method becomes an exact representation of the dynamical system as the stepsize 
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. Consistency conditions can be derived for both Linear Multistep and Runge-Kutta methods.

Linear Multistep Methods 

Consider the general linear multistep method
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 EMBED Equation  [image: image73.wmf]
We can define the first characteristic poynomial by
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and the second characteristic polynomial by
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We can show that consistency requires that
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Runge-Kutta Methods

The general  pth order Runge-Kutta method can be written in the form
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Here we have
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and it can be shown that consistency requires that
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· Worked Example 4
Examine the consistency of

(a) the classical 4th order Runge-Kutta method,

(b) the two-step Adams-Bashforth method.
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thus
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and hence the method is consistent.


[image: image82.wmf](b)
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and hence the method is consistent.

The accuracy with which a consistent numerical method represents a dynamical system is determined by the order of consistency. The method of determining this is best illustrated by an example.

· Worked Example 5
Determine the order of consistency of the Trapezoidal method.

The order of consistency is determined by substituting the exact solution 
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 into the formula of the numerical algorithm and expanding the difference between the two sides of the formual by Taylor series. The result is then normalised by multiplying by the scaling factor 
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and the method is consistent. Now the truncation error is given by
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The order is given by the highest power of h remaining. Hence the method is consistent of order two.

5.4
 ZERO STABILITY

This is a problem peculiar to consistent linear k-step methods in which a first order dynamical system is integrated using a kth order difference equation. This leads to the possible existence of spurious solutions of the difference equation which can swamp the desired solution. In order to avoid this occuring we have to restrict the roots of the first characteristic polynomial 
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 to satisfy the root condition.

 Definition – Root Condition

We say that a linear k-step method satisfies the root condition if the roots of the characteristic polynomial 
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 all lie within or on the unit circle, those on the unit circle being simple.

Note that the roots of 
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 may be complex hence the necessity of considering the unit circle rather than the interval 
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Theorem – Zero-Stability

A a linear k-step method is zero stable if and only if it satisfies the root condition.

We can now state the fundamental theorem concerning convergence:

Theorem - Convergence
A discrete variable method is convergent if and only if it is both consistent and zero stable.

Often it is desirable for the roots of 
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Definition – Strong Root Condition
A linear k-step method is said to satisfy the strong root condition if the characteristic polynomial has a simple root at 
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 and all the remaining roots lie strictly within the unit circle.

The roots 
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 for a consistent method satisfying the root condition can be categorized as
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· Worked Example 6

Show that the Gear method 
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is convegent.

Before determining the characteristic polynomials write in the standard form
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Checking consistency
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The roots of  
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 are given by
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and hence the method is zero-stable. 

Combining these results we can conclude that the method is convergent.

Exercises 2

1.
(a)
Show that the method
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is consistent and determine the value of 
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 which maximizes the order of the method.

(b) Find the range of values of 
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 for which the method is zero stable.

2.

Show that Quade’s method
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is both consistent and zero stable.

3. Show that the 3-step Gear method
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is both consistent and zero stable.
5.4 ABSOLUTE STABILITY

So far we have considered the behaviour of numerical methods in the limit as the stepsize 
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. However in practice we must deal with finite stepsizes. To illustrate the problems that might arise consider the mid-point method
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This is a linear two-step method. In standard form the method is
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Checking consistency
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The roots of 
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 are given by 
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 hence the method is both consistent and zero-stable and hence convergent. 

Now consider the solution of the initial value problem
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by the mid-point method using a stepsize 
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. Using Maple we define the initial value problem

> f:=(t,x)->-2*t*x(t)^2:x0:=1:

> IVP:={diff(x(t),t)=f(t,x),x(0)=x0}:

> FCN:={x(t)}:

We can find the exact solution

> Exact:=rhs(dsolve(IVP,FCN));
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The mid-point method requires a starting value which can be obtained from the classical fourth order Runge-Kutta method

> sv:=h->dsolve(IVP,FCN,type=numeric,method=classical[rk4],stepsize=h):

> SV:=(t,h)->rhs(sv(h)(t)[2]):

Now define the mid-point method

> midpt:=proc(n,h) option remember;

if n=1 then SV(h,h) elif n=2 then x0+2*h*f(h,SV(h,h)) 

else midpt(n-2,h)+2*h*f((n-1)*h,midpt(n-1,h))fi;

end:

Obtain a plot of the solution

> plotmidpt:=proc(N,h)

local l,i;

 l:=[];

 for i from 1 to N do

 l:=[op(l),i*h,midpt(i,h)];

 od;

 pointplot(l,connect=true);

 end:

Finally plot both the numerical and exact solutions

> with(plots):

> p1:=plotmidpt(50,0.1):

> p2:=plot(Exact,t=0..5):

> display({p1,p2}); 
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Notice that the numerical solution becomes increasingly innacurate, oscillating about the exact solution, as t increases. This behaviour arises because the behaviour of the numerical solution does not mimic that of the exact solution. In this case the problem arises because of a spurious solution of the difference equation corresponding to the root 
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. However the problem can also arise in one-step methods which have no spurious solutions. 

Consider the Linear Multistep method.
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applied to the test equation
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On substitution into the method  we obtain
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Let 
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 is called the stability polynomial of the method. Now one of the roots 
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 will correspond to the true solution, the other roots will lead to spurious solutions whose magnitude will have to be controlled to obtain stability. 

Definition – Absolute Stability
A numerical method is said to be absolutely stable for a given 
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A region 
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 of the complex plane is said to be a region of absolute stability if the method is stable for all 
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· Worked Example 7
Find and sketch the region of absolute stability for 

(a) Euler's method,

(b) Trapezoidal method.

(a) For Euler's method
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(b) For the Trapezoidal method
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giving the region
[image: image142.wmf]R

A

 shown below
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For Runge-Kutta methods the stability polynomial has the form
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where 
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 is a polynomial for an explicit method and a rational function for an implicit method.

· Worked Example 8
Find and sketch the absolute stability region for the second order Runge-Kutta method 
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Substituting into the test equation
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Hence the stability polynomial is given by
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For absolute stability we require that 
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In order to draw  the region of absolute stability consider the boundary
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In order to obtain the region we need to plot the roots of the quadratic equation
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. This is best done on a computer. The resulting stability region is shown below:
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The method outlined above is an example of the boundary locus method which is easily implemented for Linear Multistep methods as follows. The stability polynomial is
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Hence the locus of the boundary 
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· Worked Example 9

Find the region of absolute stability for the Gear method
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From Worked Example 6
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Thus the stability polynomial is given by
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which gives the plot
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In order to determine whether 
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 is the interior or exterior of the closed curve choose a point inside the curve, say 
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and we see that on of the roots, 
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, has modulus greater than one and hence 
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 must consist of the exterior of the closed curve.

· Worked Example 10

Show that the mid-point method
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has an empty region of absolute stability.

From above
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Thus the stability polynomial is given by
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Substituting 
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which does not bound any region of the complex plane. Hence 
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 is empty. 

Exercises 3

1.

Show, using the boundary locus method, that Quade’s method
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has no real region of absolute stability.

2.

Determine the regions of absolute stability of the methods
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(b) 
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APPENDIX 1

ANSWERS AND HINTS

FOR THE EXERCISES

Methods

Exercises 1

1. Use the method outlined in section to obtain tables comparing the exact and numerical solutions for a variety of stepsizes.

2. Use the method outlined in section to obtain solutions and plots with the odeplot command.

Consistency and Zero Stability

Exercises 2

1. (a)
Truncation error is 
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(b) Method is zero stable if 
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Absolute Stability

Exercises 3

1. Boundary locus gives 
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2. (a)
Region inside
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(b) Region inside
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(c) Region outside
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(d) Region outside
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APPENDIX 2

MAPLE WORK SHEETS

Worked Example 5 - Determining The Order of a Numerical Method 

> restart:

Define a function to represent the exact solution

> x:=t->x(t):

Use some aliases for the derivatives of x

> alias(x1=D(x),x2=(D@@2)(x),x3=(D@@3)(x),x4=(D@@4)(x),

x5=(D@@5)(x),x6=(D@@6)(x),x7=(D@@7)(x),x8=(D@@8)(x)):

Use the taylor command to obtain a Taylor series expansion of x(tn+h)

> ts:=taylor(x(t),t=tn,9):

Replace t-tn by h in the expansion

> tsh:=subs(t-tn=h,ts):

Convert to a polynomial so that we can perform the algebra later

> p:=unapply(convert(tsh,polynom),h):

Repeat above for x'(tn+h)

> dts:=taylor(x1(t),t=tn,8):

> dtsh:=subs(t-tn=h,dts):

> dp:=unapply(convert(dtsh,polynom),h):

Euler's Method

> simplify(p(h)-x(tn)-h*x1(tn));

Trapezoidal Rule

> simplify(p(h)-x(tn)-h*(x1(tn)+dp(h))/2);

Quade's Method

> simplify(p(4*h)-8*(p(3*h)-p(h))/19-x(tn)-6*h*(dp(4*h)+4*dp(3*h)+4*dp(h)+x1(tn))/19);

Worked Example 9

> restart:

> with(plots):

Define the characteristic polynomials

> rho:=theta->theta^2-4*theta/3+1/3;

> sigma:=theta->2/3*theta^2;

and the stability polynomial

> pi:=theta->rho(theta)-lambda*h*sigma(theta);

 Substitute z = h*lambda;

> piz:=theta->rho(theta)-z*sigma(theta);

Define the boundary of the region

> rat:=solve(piz(theta),z);

> rat1:=subs(theta=exp(I*phi),rat);

Plot the boundary

> complexplot(rat1,phi=0..2*Pi,numpoints=500);

Check whether region is inside or outside closed curve

> rs:=solve(subs(z=1,piz(theta))=0,theta);

Must be outside.

Worked Example 10

> restart:

> with(plots):

Define the characteristic polynomials

> rho:=theta->theta^2-1;

> sigma:=theta->2*theta;

Find the stability polynomial

> pi:=theta->rho(theta)-lambda*h*sigma(theta);

> piz:=theta->rho(theta)-z*sigma(theta);

Solve for z

> rat:=solve(piz(theta),z);

Substitute theta = e^(i*phi);

> rat1:=subs(theta=exp(I*phi),rat);

Simplify the result

> simplify(rat1);

Thus empty region of absolute stability.
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