
NUMERICAL METHODS

[image: image1.png]

The Rössler Attractor

5. NUMERICAL METHODS

5.0
INTRODUCTION

One of the most important tasks in a study of dynamical systems is the numerical calculation of the trajectories. Thus far we have considered the integration method to be a black box into which we pop the system, initial conditions, method and time range and out pops a plot of the trajectories. Although this approach is common in courses on dynamical systems it obscures many of the pitfalls of numerical integration.

 It is not possible at the present state of the art to choose a ‘best’ algorithm for the calculation of trajectories. There are several types of numerical algorithm, each with their own advantages and disadvantages. We shall consider a class of methods known as discrete variable methods. These methods approximate the continuous time dynamical system by a discrete time system. This means that we are not really simulating the continuous system but a discrete system which may have different dynamical properties. This is an extremely important point.

The discrete variable methods which we consider fall into two main types, Runge-Kutta methods and Linear Multistep methods. Maple has implementations of both types of method as well as a number of more sophisticated techniques designed to overcome some of the pitfalls of numerical solution. The more sophisticated methods still fall into the discrete variable category.

5.1
TYPES OF METHOD
 Although the dynamical systems which we are simulating are usually in more than one dimension we can, without loss, restrict our numercal anlaysis of the methods to the single non-autonomous differential equation

[image: image2.wmf]&

,

x

f

t

x

=

b

g

subject to the initial condition
[image: image3.wmf]x

t

x

0

0

b

g

=

. We shall usually refer to the differential equation together with the initial condition as an initial value problem (IVP). Discrete variable methods yield a series of approximations

[image: image4.wmf]X

x

t

n

n

@

(

)

on the set of points

[image: image5.wmf]t

t

h

n

N

n

n

+

=

+

=

1

0

1

,

,

K

where h is the stepsize.

Taylor Series Method

These methods are based on the Taylor series expansion

[image: image6.wmf]x

t

x

t

h

x

t

h

x

t

h

x

t

n

n

n

n

n

(

)

(

)

&

(

)

!

&

&

(

)

!

&

&

&

(

)

+

=

+

+

+

+

1

2

3

2

3

K

If the series is truncated and
[image: image7.wmf]x

t

n

(

)

 is replaced by the approximation
[image: image8.wmf]X

n

 we obtain the Taylor Series Method of order p

[image: image9.wmf]X

X

h

X

h

X

h

X

h

p

X

n

n

n

n

n

p

n

p

+

=

+

+

+

+

+

1

2

3

2

3

&

!

&

&

!

&

&

&

!

(

)

K

where
[image: image10.wmf]X

d

X

dt

p

p

p

(

)

º

.

Although there is an implementation of this method in Maple it is not much used in practice due to the necessity of computing the higher order derivatives of X. We shall only use it as a reference method when discussing the accuracy of other methods.

Runge-Kutta Methods

 These methods are based on the notion of finding a formula which agrees with the Taylor series as closely as possible without involving derivatives. For example consider the possibility of matching the second order Taylor series method

[image: image11.wmf]X

X

h

X

h

X

n

n

n

n

+

=

+

+

1

2

2

&

!

&

&

by using a formula of the form

[image: image12.wmf]X

X

h

t

X

h

n

n

n

n

+

=

+

1

f

(

,

,

)

where

[image: image13.wmf]f

a

b

(

,

,

)

(

,

)

(

,

(

,

))

t

x

h

f

t

x

f

t

ah

x

bhf

t

x

=

+

+

+

The equivalent Taylor series expression to
[image: image14.wmf]f

(

,

,

)

t

x

h

 is

[image: image15.wmf]D

(

,

,

)

&

(

)

&

&

(

)

(

,

)

(

,

)

(

,

)

(

,

)

t

x

h

x

t

h

x

t

f

t

x

h

f

t

x

f

t

x

f

t

x

t

x

=

+

=

+

+

2

2

Expanding
[image: image16.wmf]f

(

,

,

)

t

x

h

 in a Taylor series up to terms of
[image: image17.wmf]O

h

b

g

 gives

[image: image18.wmf]f

a

b

b

(

,

,

)

(

)

(

,

)

(

,

)

(

,

)

(

,

)

(

)

t

x

h

f

t

x

h

af

t

x

bf

t

x

f

t

x

O

h

t

x

=

+

+

+

+

2

Comparing the two expressions we see that

[image: image19.wmf]a

b

b

b

+

=

=

=

1

1

2

1

2

,

,

a

b

resulting in the family of solutions

[image: image20.wmf]a

l

b

l

l

=

-

=

=

=

1

1

2

,

,

a

b

where
[image: image21.wmf]l

¹

0

 is a free parameter. For
[image: image22.wmf]l

=

1

2

 we obtain the improved Euler method

[image: image23.wmf]X

X

h

f

t

X

f

t

h

X

hf

t

X

n

n

n

n

n

n

n

n

+

=

+

+

+

+

1

2

(

,

)

,

(

,

)

b

g

and for
[image: image24.wmf]l

=

1

 the modified Euler method

[image: image25.wmf]X

X

hf

t

X

f

t

X

n

n

n

h

n

h

n

n

+

=

+

+

+

1

2

2

,

(

,

)

b

g

Unfortunately the terminology for naming second order Runge-Kutta methods is not standardised and Maple calls the improved Euler method the Heun formula and the modified Euler method the improved polygon method.

The procedure above can be extended to give higher order methods such as the

classical 4th order method

[image: image26.wmf]X

X

h

k

k

k

k

k

f

t

X

k

f

t

h

X

hk

k

f

t

h

X

hk

k

f

t

h

X

hk

n

n

n

n

n

n

n

n

n

n

+

=

+

+

+

+

=

=

+

+

=

+

+

=

+

+

1

1

2

3

4

1

2

1

2

1

2

1

3

1

2

1

2

2

4

3

6

2

2

(

)

(

,

)

(

,

)

(

,

)

(

,

)

Linear Multistep Methods

These methods are based on integration of an interpolating polynomial having the values
[image: image27.wmf]f

f

t

X

n

n

n

º

(

,

)

 on a set of points
[image: image28.wmf]t

n

 at which
[image: image29.wmf]X

n

 has already been computed. By integrating

[image: image30.wmf]&

,

x

f

t

x

=

b

g

over the interval
[image: image31.wmf]t

t

n

n

,

+

1

 we obtain

[image: image32.wmf]x

t

x

t

f

t

x

dt

n

n

t

t

n

n

+

-

=

+

z

1

1

b

g

b

g

(

,

)

Using linear interpolation in the interval we have

[image: image33.wmf]x

t

x

t

t

t

t

t

f

t

t

t

t

f

dt

n

n

n

n

n

n

n

n

n

n

t

t

n

n

+

+

+

+

+

-

@

-

-

+

-

-

L

N

M

O

Q

P

+

z

1

1

1

1

1

1

b

g

b

g

Integrating gives

[image: image34.wmf]x

t

x

t

h

f

f

n

n

n

n

+

+

-

@

+

1

1

2

b

g

b

g

b

g

This leads to the Trapezoidal method

[image: image35.wmf]X

X

h

f

f

n

n

n

n

+

+

=

+

+

1

1

2

b

g

The general form of these methods is

[image: image36.wmf]a

b

j

n

j

j

k

j

n

j

j

k

X

h

f

n

+

=

+

=

å

å

=

=

0

0

0

1

2

,

,

,

,

K

where
[image: image37.wmf]a

j

 and
[image: image38.wmf]b

j

 are constants,
[image: image39.wmf]a

k

¹

0

. This formula is called a linear k-step method. In order to generate the sequence of approximations
[image: image40.wmf]X

n

l

q

 it is first necessary to obtain k starting values
[image: image41.wmf]X

X

X

k

0

1

1

,

,

,

K

-

. If
[image: image42.wmf]b

k

=

0

 the method is explicit. If
[image: image43.wmf]b

k

¹

0

 then the method is implicit and leads to a non-linear equation for
[image: image44.wmf]X

n

k

+

.

The main methods of this type which we shall consider are:

Adams-Bashforth

These methods are explicit with methods of order k being k-step. Methods of order from one to three have the formulae

[image: image45.wmf]X

X

hf

t

X

X

X

h

f

t

X

f

t

X

X

X

h

f

t

X

f

t

X

f

t

X

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

+

+

-

-

+

-

-

-

-

=

+

=

+

-

=

+

-

+

1

1

1

1

1

1

1

2

2

2

3

12

23

16

5

,

,

,

,

,

,

b

g

b

g

b

g

m

r

b

g

b

g

b

g

m

r

The first order method is more normally called the Euler method.

Adams-Moulton

These methods are implicit with methods of order k being
[image: image46.wmf]k

-

1

b

g

-step. Methods of order from one to three have the formulae

[image: image47.wmf]X

X

hf

t

X

X

X

h

f

t

X

f

t

X

X

X

h

f

t

X

f

t

X

f

t

X

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

+

+

+

+

+

+

+

+

+

-

-

=

+

=

+

+

=

+

+

-

1

1

1

1

1

1

1

1

1

1

1

2

12

5

8

,

,

,

,

,

,

b

g

b

g

b

g

m

r

b

g

b

g

b

g

m

r

The first order method is called the backward Euler formula and the second order method is the Trapezoidal method.

Gear Methods

These methods are implicit with methods of order k being k-step. Methods of order from one to three have the formulae

[image: image48.wmf]X

X

hf

t

X

X

X

X

h

f

t

X

X

X

X

X

h

f

t

X

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

+

+

+

+

-

+

+

+

-

-

+

+

=

+

=

-

+

=

-

+

+

1

1

1

1

1

3

1

1

1

1

1

11

1

2

1

1

4

2

3

18

9

2

6

11

,

,

,

b

g

l

q

b

g

l

q

b

g

The first order method is again the backward Euler formula.

5.2
MAPLE IMPLEMENTATION
 Maple contains a large range of numerical procedures for integrating non-autonomous dynamical systems of the type

[image: image49.wmf]&

,

,

x

f

x

x

x

=

=

t

t

b

g

b

g

0

0

All of these procedures are invoked using the Maple dsolve command with the numeric option. The syntax for the command is

dsolve(deqns, vars, type=numeric, options)

where deqns defines the system of differential equations and initial values, vars defines the dependent and independent variables, type=numeric tells Maple to use a numerical algorithm and options allows a choice of method, stepsize and other options associated with the method. The default method is a Fehlberg fourth-fifth order Runge-Kutta method.

· Worked Example 1 - Van der Pol Equation

As an example consider the solution of the Van der Pol equation written as the first order system

[image: image50.wmf]&

&

x

y

y

x

x

y

=

=

-

+

-

+

e

1

2

c

h

> epsilon:=10:

> ivp := {diff(x(t),t)=y(t),diff(y(t),t)=-x(t)+epsilon*(1-x(t)^2)*y(t),

x(0)=0,y(0)=0.5}:

> fcns := {x(t), y(t)}:

This defines the initial value problem. Now we invoke dsolve

> p1:= dsolve(ivp,fcns,type=numeric);

 EMBED Word.Picture.8

Note that the output from the dsolve command is a procedure. In order to find the numerical solution we need to evaluate the procedure at the appropriate value of t.

> p1(10);

 EMBED Word.Picture.8

We can us the Maple odeplot command to graph the solution. This command is in the plots package so this has to be loaded first.

> with(plots):

Now we can plot the solution in various ways. Firstly here is a plot of the solution components v t over the range [0,20]. numpoints controls the number of plotted points which needs to be relatively high here to obtain a realistic plot.

> odeplot(p1,[[t,x(t)],[t,y(t)]],0..20, numpoints=500);

[image: image51.png]10

10

15

RN}

It is also possible to obtain a phase plot

> odeplot(p1,[[x(t),y(t)]],0..20, numpoints=500);

[image: image52.wmf]
and a three dimensional plot

> odeplot(p1,[[t,x(t),y(t)]],0..20, numpoints=500);

[image: image53.png]

Classical Methods

Maple contains a number of one-step methods for the numerical solution of initial value problems. These are referred to as classical methods and are invoked by including the option method=classical[type] in the call to dsolve. Here type can be one of

foreuler
the forward Euler method;

heunform
the Heun formula (also known as the trapezoidal rule, or the improved Euler method);

impoly
the improved polygon method (also known as the modified

Euler method);

rk2
the second-order classical Runge-Kutta method;

rk3
the third-order classical Runge-Kutta method;

rk4
the fourth-order classical Runge-Kutta method;

adambash
the Adams-Bashford method (a "predictor" method);

abmoulton
the Adams-Bashford-Moulton method (a "predictor-

corrector" method).

If no type is specified the forward Euler method is used.

· Worked Example 2 - The Forward Euler Method

Consider the IVP

[image: image54.wmf]¢

=

-

=

y

xy

y

2

0

1

2

,

b

g

We can define this in Maple as

> ivp:={diff(y(x),x)=-2*x*y(x)^2,y(0)=1}:

In this case Maple can find the exact solution using dsolve

> Exactsoln:=rhs(dsolve(ivp,y(x)));

 EMBED Word.Picture.8

Now we use Euler's method to obtain the numerical solution. Note that this method like all the other methods of type classical uses a fixed stepsize which we provide.

> es0:=dsolve(ivp,y(x),type=numeric,

method=classical[foreuler],stepsize=0.001):

Thus we can find the solution at
[image: image55.wmf]x

=

0

4

.

> es0(0.4);

 EMBED Word.Picture.8

and plot the solution for a range of values of x
> odeplot(es0,[x,y(x)],0..6,labels=[x,y]);

[image: image56.png]08

06

04

02

Now often we want to investigate how the solution behaves for differing values of the stepsize h. In order to do this we can define a different version of the function for the numerical solution which uses the stepsize as one of the input parameters

> es1:=h->dsolve(ivp,y(x),type=numeric,

method=classical[foreuler],stepsize=h):

Thus we can obtain the solution for different stepsizes

> es1(0.001)(0.4);

 EMBED Word.Picture.8

> es1(0.01)(0.4);

 EMBED Word.Picture.8

We can compare the solution at different stepsizes by constructing a table of values as follows:

Firstly define the output points

> x:=k->k*0.1:

Now define a function which finds the approximate solution at a given output point

> EulerSoln:=(x,h)->rhs(es1(h)(x)[2]):

Define the exact solution

> ExactSoln:=x->1/(1+x^2);

 EMBED Word.Picture.8

Construct an array whose elements compare the exact solution to the numerical solution for three different stepsizes.

> mm:=array(1..8,1..5):

 mm[1,1]:=`x(k)`:mm[1,2]:=`Exactsoln`:mm[1,3]:=`h=0.1`:

mm[1,4]:=`h=0.01`:mm[1,5]:=`h=0.001`:

for i from 2 to 8 do

mm[i,1]:=0.1*(i-2):

mm[i,2]:=evalf(ExactSoln(x(i-2)),5):

for j from 3 to 5 do

mm[i,j]:=evalf(EulerSoln(x(i-2),10^(-j+2)),5)

od:

od:

> eval(mm);

 EMBED Word.Picture.8

Another possibility is to compare the errors at each stepsize. Firstly define a function giving the error

> err:=(x,h)->ExactSoln(x)-EulerSoln(x,h):

> tt:=array(1..8,1..4):

tt[1,1]:=`x(k)`:tt[1,2]:=`h=0.1`:tt[1,3]:=`h=0.01`:tt[1,4]:=`h=0.001`:

 for i from 2 to 8 do

tt[i,1]:=0.1*(i-2);

for j from 2 to 4 do

tt[i,j]:=evalf(err(x(i-2),10^(-j+1)),5);

od:

od:

> eval(tt);

 EMBED Word.Picture.8

· Worked Example 3 - The Classical Second Order Runge-Kutta Method

Consider the solution of the IVP

[image: image57.wmf]¢

=

-

+

=

y

y

x

y

4

4

0

1

,

b

g

> IVP:={diff(y(x),x)=-4*y(x)+4*x,y(0)=1}:

The exact solution is given by

> dsolve(IVP,y(x));

 EMBED Word.Picture.8

Use the 2nd order classical Runge-Kutta method

> rk2:=h->dsolve(IVP,y(x),type=numeric,method=classical[rk2],stepsize=h):

> x:=k->k*0.5:

> RK2Soln:=(x,h)->rhs(rk2(h)(x)[2]):

> ExactSoln:=x->x-1/4+5/4*exp(-4*x);

 EMBED Word.Picture.8

> mm:=array(1..10,1..5):

 mm[1,1]:=`x(k)`:mm[1,2]:=`Exactsoln`:mm[1,3]:=`h=0.25`:

mm[1,4]:=`h=0.5`:mm[1,5]:=`h=0.75`:

for i from 2 to 10 do

mm[i,1]:=0.5*(i-2):

mm[i,2]:=evalf(ExactSoln(x(i-2)),5):

for j from 3 to 5 do mm[i,j]:=evalf(RK2Soln(x(i-2),0.25*(j-2)),5) od;

od:

> eval(nm);

 EMBED Word.Picture.8

Note that as the stepsize is increased the numerical solution fails to represent the exact solution accurately. Indeed for a stepsize of 0.75 the numerical solution 'blows up'. This is due to non-convergence as a result of the numerical method becoming unstable. We shall consider this phenomenon next.

Exercises 1

1.
Use the classical numerical methods foreuler, heunform, rk3, rk4 and adambash to attempt to obtain a numerical solution of the IVPs

(a)

[image: image58.wmf]dx

dt

tx

x

=

-

=

2

0

1

2

,

b

g

(b)

[image: image59.wmf]dx

dt

x

x

x

=

-

=

5

1

0

0

5

b

g

b

g

,

.

Use a range of stepsizes in the interval [0,1]. At what approximate value of the stepsize do the methods become unstable.

2.
Use each of the methods above to solve the systems of differential equations

(a)

[image: image60.wmf]&

,

(

)

.

&

,

(

)

.

x

x

xy

x

y

y

xy

y

=

-

+

=

=

-

=

0

0

5

0

0

5

(b)

[image: image61.wmf]&

,

(

)

&

(

)

,

(

)

.

x

y

x

y

x

x

y

y

=

=

=

-

+

-

=

0

0

1

0

0

5

2

e

where
[image: image62.wmf]e

 is a parameter. (Try
[image: image63.wmf]e

=

0

5

1

5

10

.

,

,

,

).

(c)

[image: image64.wmf]&

(

),

(

)

&

.

,

(

)

&

.

,

(

)

x

y

z

x

y

x

y

y

z

z

xz

z

=

-

+

=

=

+

=

=

-

+

=

0

1

0

2

0

1

0

2

8

0

1

In each case use odeplot to obtain time series and phase plots.

5.3
LOCAL AND GLOBAL ERRORS

The output of a discrete variable method is a set of points
[image: image65.wmf]t

X

n

n

,

l

q

and the output of the dynamical system is a continuous trajectory
[image: image66.wmf]x

t

b

g

. For the numerical results to provide a good approximation to the trajectory we require that the difference

[image: image67.wmf]X

x

t

N

N

-

<

b

g

e

where
[image: image68.wmf]e

 is some defined error tolerance, at each solution point. This difference is called the global error and is the accumulated error over all solution steps. Unfortunately it is extremely difficult to accomplish this and we have to confine ourselves to controlling the local error

[image: image69.wmf]~

X

x

t

n

n

-

b

g

at each step where
[image: image70.wmf]~

X

n

 is the numerical solution obtained on the assumption that the numerical solution at the previous solution point is exact.

There are two sources of local error,the roundoff error and the truncation error.

Roundoff Error

The roundoff error is the error which arises from the fact that numerical methods are implemented on digital computers which only calculate results to a fixed precision which is dependent on the computer system used. Note that since roundoff errors depend only on the number and type of arithmetic operations per step and is thus independent of the integration stepsize h.

Truncation Error

The truncation error of a numerical method results from the approximation of a continuous dynamical system by a discrete one. The truncation error is machine independent, depending only on the algorithm used and the stepsize h.

An important concept in the analysis of the truncation error is that of consistency. Basically consistency requires that the discrete variable method becomes an exact representation of the dynamical system as the stepsize
[image: image71.wmf]h

®

0

. Consistency conditions can be derived for both Linear Multistep and Runge-Kutta methods.

Linear Multistep Methods

Consider the general linear multistep method

[image: image72.wmf]a

b

j

n

j

j

k

j

n

j

j

k

X

h

f

n

+

=

+

=

å

å

=

=

0

0

0

1

2

,

,

,

,

K

 EMBED Equation [image: image73.wmf]
We can define the first characteristic poynomial by

[image: image74.wmf]r

q

a

q

(

)

=

=

å

i

i

i

k

0

and the second characteristic polynomial by

[image: image75.wmf]s

q

b

q

(

)

=

=

å

i

i

i

k

0

We can show that consistency requires that

[image: image76.wmf]r

s

r

(

)

,

(

)

(

)

1

0

1

1

=

=

¢

Runge-Kutta Methods

The general pth order Runge-Kutta method can be written in the form

[image: image77.wmf]Y

Y

h

c

k

k

f

t

X

k

f

t

ha

X

h

b

k

r

p

n

n

r

r

r

p

n

n

r

n

r

n

rs

s

s

p

+

=

=

=

+

=

=

+

+

F

H

G

I

K

J

=

å

å

1

1

1

1

2

3

,

,

,

,

,

b

g

K

Here we have

[image: image78.wmf]r

q

q

b

g

=

-

1

and it can be shown that consistency requires that

[image: image79.wmf]r

r

(

)

,

(

)

1

0

1

1

=

=

¢

=

å

c

r

r

m

· Worked Example 4
Examine the consistency of

(a) the classical 4th order Runge-Kutta method,

(b) the two-step Adams-Bashforth method.

[image: image80.wmf](a)

r

q

q

r

q

(

)

(

)

=

-

=

+

+

+

=

¢

=

=

å

1

1

6

1

3

1

3

1

6

1

1

1

4

c

r

r

thus

[image: image81.wmf]r

r

(

)

(

)

1

0

1

1

1

4

=

¢

=

=

=

å

c

r

r

and hence the method is consistent.

[image: image82.wmf](b)

r

q

q

q

s

q

q

r

q

q

(

)

(

)

(

)

=

-

=

-

¢

=

-

2

3

2

1

2

2

1

thus

[image: image83.wmf]r

r

s

(

)

(

)

(

)

1

0

1

1

1

=

¢

=

=

and hence the method is consistent.

The accuracy with which a consistent numerical method represents a dynamical system is determined by the order of consistency. The method of determining this is best illustrated by an example.

· Worked Example 5
Determine the order of consistency of the Trapezoidal method.

The order of consistency is determined by substituting the exact solution
[image: image84.wmf]x

n

 into the formula of the numerical algorithm and expanding the difference between the two sides of the formual by Taylor series. The result is then normalised by multiplying by the scaling factor
[image: image85.wmf]1

1

¢

r

b

g

h

.

[image: image86.wmf]r

q

q

s

q

q

r

q

(

)

(

)

(

)

=

-

=

+

¢

=

1

1

2

1

2

1

thus

[image: image87.wmf]r

r

s

(

)

(

)

(

)

1

0

1

1

1

=

¢

=

=

and the method is consistent. Now the truncation error is given by

[image: image88.wmf]e

r

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

h

x

x

h

f

f

h

x

x

h

x

x

h

x

h

x

h

x

h

x

x

h

x

x

h

x

h

x

h

x

=

¢

-

-

+

L

N

M

O

Q

P

=

-

-

+

L

N

M

O

Q

P

=

+

+

+

+

-

-

+

+

+

+

F

H

G

I

K

J

R

S

|

|

T

|

|

U

V

|

|

W

|

|

=

-

+

+

+

+

+

1

1

2

1

2

1

2

6

2

2

12

1

1

1

1

2

3

2

2

b

g

b

g

b

g

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

&

K

K

K

The order is given by the highest power of h remaining. Hence the method is consistent of order two.

5.4
 ZERO STABILITY

This is a problem peculiar to consistent linear k-step methods in which a first order dynamical system is integrated using a kth order difference equation. This leads to the possible existence of spurious solutions of the difference equation which can swamp the desired solution. In order to avoid this occuring we have to restrict the roots of the first characteristic polynomial
[image: image89.wmf]r

q

b

g

 to satisfy the root condition.

 Definition – Root Condition

We say that a linear k-step method satisfies the root condition if the roots of the characteristic polynomial
[image: image90.wmf]r

q

(

)

 all lie within or on the unit circle, those on the unit circle being simple.

Note that the roots of
[image: image91.wmf]r

q

(

)

 may be complex hence the necessity of considering the unit circle rather than the interval
[image: image92.wmf]-

1

1

,

 in the definition.

Theorem – Zero-Stability

A a linear k-step method is zero stable if and only if it satisfies the root condition.

We can now state the fundamental theorem concerning convergence:

Theorem - Convergence
A discrete variable method is convergent if and only if it is both consistent and zero stable.

Often it is desirable for the roots of
[image: image93.wmf]r

q

(

)

 to satisfy the strong root condition.

Definition – Strong Root Condition
A linear k-step method is said to satisfy the strong root condition if the characteristic polynomial has a simple root at
[image: image94.wmf]q

1

1

=

 and all the remaining roots lie strictly within the unit circle.

The roots
[image: image95.wmf]q

i

i

k

,

1

£

£

 of
[image: image96.wmf]r

q

(

)

 for a consistent method satisfying the root condition can be categorized as

[image: image97.wmf]q

q

q

q

q

q

q

1

1

1

2

1

2

1

1

=

£

£

£

=

£

£

<

+

£

£

-

principal

root

s

 roots

 roots

 roots

i

i

i

i

i

i

i

k

purious

i

m

essential

m

i

k

non

essential

,

,

,

,

,

,

· Worked Example 6

Show that the Gear method

[image: image98.wmf]X

X

X

h

f

t

X

n

n

n

n

n

+

-

+

+

=

-

+

1

1

3

1

1

1

4

2

3

l

q

b

g

,

is convegent.

Before determining the characteristic polynomials write in the standard form

[image: image99.wmf]X

X

X

h

f

t

X

k

k

k

k

k

+

+

+

+

-

+

=

2

4

3

1

1

3

2

2

2

3

,

b

g

Then

[image: image100.wmf]r

q

q

q

s

q

q

b

g

b

g

=

-

+

=

2

4

3

1

3

2

3

2

,

Checking consistency

[image: image101.wmf]r

r

s

1

1

0

1

2

1

4

3

1

3

4

3

2

3

b

g

b

g

b

g

=

-

+

=

¢

=

-

=

=

,

The roots of
[image: image102.wmf]r

q

b

g

 are given by

[image: image103.wmf]r

q

q

q

q

q

q

b

g

b

g

b

g

=

-

+

=

=

-

-

\

=

2

4

3

1

3

1

3

1

3

0

3

1

1

1

,

and hence the method is zero-stable.

Combining these results we can conclude that the method is convergent.

Exercises 2

1.
(a)
Show that the method

[image: image104.wmf](

)

(

)

[

]

n

n

n

n

n

n

f

f

f

h

X

X

X

a

a

a

a

-

-

+

=

+

+

-

+

+

+

+

1

2

1

2

1

2

1

is consistent and determine the value of
[image: image105.wmf]a

 which maximizes the order of the method.

(b) Find the range of values of
[image: image106.wmf]a

 for which the method is zero stable.

2.

Show that Quade’s method

[image: image107.wmf](

)

(

)

n

n

n

n

n

n

n

n

f

f

f

f

h

X

X

X

X

+

+

+

=

-

-

-

+

+

+

+

+

+

1

3

4

1

3

4

4

4

19

6

19

8

is both consistent and zero stable.

3. Show that the 3-step Gear method

[image: image108.wmf](

)

3

1

2

3

11

6

2

9

18

11

1

+

+

+

+

=

+

-

-

n

n

n

n

n

f

h

X

X

X

X

is both consistent and zero stable.
5.4 ABSOLUTE STABILITY

So far we have considered the behaviour of numerical methods in the limit as the stepsize
[image: image109.wmf]h

®

0

. However in practice we must deal with finite stepsizes. To illustrate the problems that might arise consider the mid-point method

[image: image110.wmf]X

X

hf

n

n

n

+

-

=

+

1

1

2

This is a linear two-step method. In standard form the method is

[image: image111.wmf]X

X

hf

n

n

n

+

+

-

=

2

1

2

thus

[image: image112.wmf]r

q

q

s

q

q

b

g

b

g

=

-

=

2

1

2

,

Checking consistency

[image: image113.wmf]r

r

s

1

1

1

0

1

2

1

1

2

b

g

b

g

b

g

=

-

=

¢

=

´

=

,

The roots of
[image: image114.wmf]r

q

b

g

 are given by
[image: image115.wmf]q

=

±

1

 hence the method is both consistent and zero-stable and hence convergent.

Now consider the solution of the initial value problem

[image: image116.wmf]&

,

x

tx

x

=

-

=

2

0

1

2

b

g

by the mid-point method using a stepsize
[image: image117.wmf]h

=

0

1

.

. Using Maple we define the initial value problem

> f:=(t,x)->-2*t*x(t)^2:x0:=1:

> IVP:={diff(x(t),t)=f(t,x),x(0)=x0}:

> FCN:={x(t)}:

We can find the exact solution

> Exact:=rhs(dsolve(IVP,FCN));

[image: image118.wmf] :=

Exact

1

 +

t

2

1

The mid-point method requires a starting value which can be obtained from the classical fourth order Runge-Kutta method

> sv:=h->dsolve(IVP,FCN,type=numeric,method=classical[rk4],stepsize=h):

> SV:=(t,h)->rhs(sv(h)(t)[2]):

Now define the mid-point method

> midpt:=proc(n,h) option remember;

if n=1 then SV(h,h) elif n=2 then x0+2*h*f(h,SV(h,h))

else midpt(n-2,h)+2*h*f((n-1)*h,midpt(n-1,h))fi;

end:

Obtain a plot of the solution

> plotmidpt:=proc(N,h)

local l,i;

 l:=[];

 for i from 1 to N do

 l:=[op(l),i*h,midpt(i,h)];

 od;

 pointplot(l,connect=true);

 end:

Finally plot both the numerical and exact solutions

> with(plots):

> p1:=plotmidpt(50,0.1):

> p2:=plot(Exact,t=0..5):

> display({p1,p2});

[image: image119.png]

Notice that the numerical solution becomes increasingly innacurate, oscillating about the exact solution, as t increases. This behaviour arises because the behaviour of the numerical solution does not mimic that of the exact solution. In this case the problem arises because of a spurious solution of the difference equation corresponding to the root
[image: image120.wmf]q

=

-

1

 of
[image: image121.wmf]r

q

b

g

. However the problem can also arise in one-step methods which have no spurious solutions.

Consider the Linear Multistep method.

[image: image122.wmf]a

b

i

n

i

i

k

i

n

i

i

k

Y

h

f

+

=

+

=

å

å

=

0

0

applied to the test equation

[image: image123.wmf]¢

=

y

y

l

On substitution into the method we obtain

[image: image124.wmf]a

l

b

i

n

i

i

k

i

n

i

i

k

Y

h

Y

+

=

+

=

å

å

=

0

0

Thus

[image: image125.wmf]a

l

b

i

n

i

i

k

i

n

i

i

k

Y

h

Y

+

=

+

=

å

å

-

=

0

0

0

Let
[image: image126.wmf]Y

n

n

=

q

, then

[image: image127.wmf]a

q

l

b

q

i

i

i

k

i

i

i

k

h

=

=

å

å

-

=

0

0

0

Hence

[image: image128.wmf]p

q

l

r

q

ls

q

(

;

)

(

)

(

)

h

h

º

-

=

0

[image: image129.wmf]p

q

l

(

;

)

h

 is called the stability polynomial of the method. Now one of the roots
[image: image130.wmf]q

l

1

(

)

h

 will correspond to the true solution, the other roots will lead to spurious solutions whose magnitude will have to be controlled to obtain stability.

Definition – Absolute Stability
A numerical method is said to be absolutely stable for a given
[image: image131.wmf]h

l

if all the roots of
[image: image132.wmf]p

q

l

(

;

)

h

 lie within the unit circle.

A region
[image: image133.wmf]R

A

 of the complex plane is said to be a region of absolute stability if the method is stable for all
[image: image134.wmf]h

l

in
[image: image135.wmf]R

A

.

· Worked Example 7
Find and sketch the region of absolute stability for

(a) Euler's method,

(b) Trapezoidal method.

(a) For Euler's method

[image: image136.wmf]p

q

l

q

l

(

;

)

(

)

h

h

=

-

+

1

Thus

[image: image137.wmf]1

1

+

<

h

l

[image: image138.wmf]R

A

 is shown below

[image: image139.wmf]-

2

0

R

A

(b) For the Trapezoidal method

[image: image140.wmf]p

q

l

l

q

l

(

;

)

h

h

h

=

-

F

H

G

I

K

J

-

+

F

H

G

I

K

J

1

2

1

2

Thus

[image: image141.wmf]1

2

1

2

1

+

-

<

h

h

l

l

giving the region
[image: image142.wmf]R

A

 shown below

[image: image143.wmf]0

R

A

For Runge-Kutta methods the stability polynomial has the form

[image: image144.wmf]p

q

l

a

q

a

lg

l

(

;

)

h

h

h

=

+

-

1

0

0

b

g

where
[image: image145.wmf]g

0

 is a polynomial for an explicit method and a rational function for an implicit method.

· Worked Example 8
Find and sketch the absolute stability region for the second order Runge-Kutta method

[image: image146.wmf]Y

Y

h

k

k

n

n

+

=

+

+

1

1

2

2

b

g

where

[image: image147.wmf]k

f

x

Y

k

f

x

h

Y

hk

n

n

n

n

1

2

1

=

=

+

+

,

,

b

g

b

g

Substituting into the test equation

[image: image148.wmf]k

f

x

Y

h

Y

k

f

x

h

Y

hk

h

Y

h

Y

n

n

n

n

n

n

n

1

2

1

2

2

=

=

=

+

+

=

+

,

,

b

g

b

g

l

l

l

Thus

[image: image149.wmf]Y

Y

h

Y

h

Y

h

h

Y

n

n

n

n

n

+

=

+

+

=

+

+

F

H

G

I

K

J

1

2

2

2

2

2

1

2

l

l

l

l

Hence the stability polynomial is given by

[image: image150.wmf]p

q

l

q

l

l

(

;

)

h

h

h

=

-

+

+

F

H

G

I

K

J

1

2

2

2

For absolute stability we require that

[image: image151.wmf]1

2

1

2

2

+

+

<

h

h

l

l

In order to draw the region of absolute stability consider the boundary
[image: image152.wmf]¶

R

A

 of
[image: image153.wmf]R

A

. The locus of this boundary will be the set of complex numbers z such that

[image: image154.wmf]1

2

1

2

+

+

=

z

z

Thus

[image: image155.wmf]1

2

0

2

2

+

+

=

£

<

z

z

e

i

f

f

p

,

In order to obtain the region we need to plot the roots of the quadratic equation

[image: image156.wmf]z

z

e

i

2

2

2

2

0

+

+

-

=

f

for
[image: image157.wmf]f

 in the range
[image: image158.wmf]0

2

£

<

f

p

. This is best done on a computer. The resulting stability region is shown below:

[image: image159.png]AETE 412 1 08060402

The method outlined above is an example of the boundary locus method which is easily implemented for Linear Multistep methods as follows. The stability polynomial is

[image: image160.wmf]p

q

l

r

q

ls

q

(

;

)

(

)

(

)

h

h

º

-

=

0

and hence

[image: image161.wmf]h

l

r

q

s

q

=

(

)

(

)

but on
[image: image162.wmf]¶

R

A

[image: image163.wmf]q

q

f

p

f

=

=

£

<

1

0

2

,

,

thus

e

i

Hence the locus of the boundary
[image: image164.wmf]¶

R

A

 is given by the set of complex numbers z satisfying

[image: image165.wmf]z

e

e

i

i

=

£

<

r

s

f

p

f

f

c

h

c

h

,

0

2

· Worked Example 9

Find the region of absolute stability for the Gear method

[image: image166.wmf]X

X

X

h

f

t

X

n

n

n

n

n

+

-

+

+

=

-

+

1

1

3

1

1

1

4

2

3

l

q

b

g

,

From Worked Example 6

[image: image167.wmf]r

q

q

q

s

q

q

b

g

b

g

=

-

+

=

2

4

3

1

3

2

3

2

,

Thus the stability polynomial is given by

[image: image168.wmf]p

q

l

q

q

lq

(

;

)

h

h

º

-

+

-

=

2

4

3

1

3

2

3

2

0

Substituting
[image: image169.wmf]z

h

=

l

 and solving

[image: image170.wmf]z

=

-

+

1

2

2

2

3

4

1

q

q

q

Now substitute
[image: image171.wmf]q

f

=

e

i

 to obtain

[image: image172.wmf]z

e

e

e

e

e

i

i

i

i

i

=

-

+

=

-

+

-

-

1

2

2

2

3

2

1

2

2

3

4

1

2

f

f

f

j

f

which gives the plot

[image: image173.png]

In order to determine whether
[image: image174.wmf]R

A

 is the interior or exterior of the closed curve choose a point inside the curve, say
[image: image175.wmf]z

=

1

 and evaluate the roots of
[image: image176.wmf]p

q

l

(

;

)

h

.

[image: image177.wmf]q

q

q

q

q

q

2

4

3

1

3

2

3

2

2

2

0

4

1

0

4

4

4

2

2

3

-

+

-

=

\

-

+

=

\

=

±

-

=

±

and we see that on of the roots,
[image: image178.wmf]2

3

+

, has modulus greater than one and hence
[image: image179.wmf]R

A

 must consist of the exterior of the closed curve.

· Worked Example 10

Show that the mid-point method

[image: image180.wmf]X

X

hf

t

X

n

n

n

n

+

-

=

+

1

1

2

,

b

g

has an empty region of absolute stability.

From above

[image: image181.wmf]r

q

q

s

q

q

b

g

b

g

=

-

=

2

1

2

,

Thus the stability polynomial is given by

[image: image182.wmf]p

q

l

q

lq

(

;

)

h

h

º

-

-

=

2

1

2

0

Substituting
[image: image183.wmf]z

h

=

l

 and solving

[image: image184.wmf]z

=

-

q

q

2

1

2

Now substitute
[image: image185.wmf]q

f

=

e

i

 to obtain

[image: image186.wmf]z

e

e

e

e

i

i

i

i

i

=

-

=

-

=

-

2

1

2

2

f

f

f

f

f

sin

which does not bound any region of the complex plane. Hence
[image: image187.wmf]R

A

 is empty.

Exercises 3

1.

Show, using the boundary locus method, that Quade’s method

[image: image188.wmf](

)

(

)

n

n

n

n

n

n

n

n

f

f

f

f

h

X

X

X

X

+

+

+

=

-

-

-

+

+

+

+

+

+

1

3

4

1

3

4

4

4

19

6

19

8

has no real region of absolute stability.

2.

Determine the regions of absolute stability of the methods

(a)

[image: image189.wmf](

)

n

n

n

n

n

f

f

f

h

X

X

5

16

23

12

1

2

2

3

+

-

+

=

+

+

+

+

(b)
[image: image190.wmf](

)

n

n

n

n

n

f

f

f

h

X

X

-

+

+

=

+

+

+

+

1

2

1

2

8

5

12

(c)
[image: image191.wmf](

)

3

1

2

3

11

6

2

9

18

11

1

+

+

+

+

+

+

-

=

n

n

n

n

n

f

h

X

X

X

X

(d)
[image: image192.wmf](

)

4

1

2

3

4

25

12

3

16

36

48

25

1

+

+

+

+

+

+

-

+

-

=

n

n

n

n

n

n

f

h

X

X

X

X

X

APPENDIX 1

ANSWERS AND HINTS

FOR THE EXERCISES

Methods

Exercises 1

1. Use the method outlined in section to obtain tables comparing the exact and numerical solutions for a variety of stepsizes.

2. Use the method outlined in section to obtain solutions and plots with the odeplot command.

Consistency and Zero Stability

Exercises 2

1. (a)
Truncation error is
[image: image193.wmf]1

12

3

2

1

24

4

3

4

1

3

a

a

-

+

-

+

b

g

b

g

c

h

b

g

b

g

x

h

x

h

O

h

n

n

 hence maximum order when
[image: image194.wmf]a

=

1

.

(b) Method is zero stable if
[image: image195.wmf]-

£

<

1

1

a

.

2.
[image: image196.wmf]r

q

q

q

q

s

q

q

q

q

b

g

b

g

=

-

+

-

=

+

+

+

4

8

19

3

8

19

6

19

4

24

19

3

24

19

6

19

1

,

, hence
[image: image197.wmf]r

r

s

1

0

1

1

60

19

b

g

b

g

b

g

=

¢

=

=

,

 and roots of
[image: image198.wmf]r

q

b

g

 are
[image: image199.wmf]1

1

4

19

345

19

,

,

-

±

i

 which all have absolute value one.

3.
[image: image200.wmf]r

q

q

q

q

s

q

q

b

g

b

g

=

-

+

-

=

3

18

11

2

9

11

2

11

6

11

3

,

, hence
[image: image201.wmf]r

r

s

1

0

1

1

6

11

b

g

b

g

b

g

=

¢

=

=

,

 and roots of
[image: image202.wmf]r

q

b

g

 are
[image: image203.wmf]1

7

22

39

22

,

±

i

 which all have absolute value less than or equal to one.

Absolute Stability

Exercises 3

1. Boundary locus gives
[image: image204.wmf]z

i

=

-

+

-

1

3

2

19

4

2

4

1

sin

cos

cos

cos

f

f

f

f

b

g

2. (a)
Region inside

[image: image205.wmf]

(b) Region inside

[image: image206.png]

(c) Region outside

[image: image207.png]

(d) Region outside

[image: image208.png]

APPENDIX 2

MAPLE WORK SHEETS

Worked Example 5 - Determining The Order of a Numerical Method

> restart:

Define a function to represent the exact solution

> x:=t->x(t):

Use some aliases for the derivatives of x

> alias(x1=D(x),x2=(D@@2)(x),x3=(D@@3)(x),x4=(D@@4)(x),

x5=(D@@5)(x),x6=(D@@6)(x),x7=(D@@7)(x),x8=(D@@8)(x)):

Use the taylor command to obtain a Taylor series expansion of x(tn+h)

> ts:=taylor(x(t),t=tn,9):

Replace t-tn by h in the expansion

> tsh:=subs(t-tn=h,ts):

Convert to a polynomial so that we can perform the algebra later

> p:=unapply(convert(tsh,polynom),h):

Repeat above for x'(tn+h)

> dts:=taylor(x1(t),t=tn,8):

> dtsh:=subs(t-tn=h,dts):

> dp:=unapply(convert(dtsh,polynom),h):

Euler's Method

> simplify(p(h)-x(tn)-h*x1(tn));

Trapezoidal Rule

> simplify(p(h)-x(tn)-h*(x1(tn)+dp(h))/2);

Quade's Method

> simplify(p(4*h)-8*(p(3*h)-p(h))/19-x(tn)-6*h*(dp(4*h)+4*dp(3*h)+4*dp(h)+x1(tn))/19);

Worked Example 9

> restart:

> with(plots):

Define the characteristic polynomials

> rho:=theta->theta^2-4*theta/3+1/3;

> sigma:=theta->2/3*theta^2;

and the stability polynomial

> pi:=theta->rho(theta)-lambda*h*sigma(theta);

 Substitute z = h*lambda;

> piz:=theta->rho(theta)-z*sigma(theta);

Define the boundary of the region

> rat:=solve(piz(theta),z);

> rat1:=subs(theta=exp(I*phi),rat);

Plot the boundary

> complexplot(rat1,phi=0..2*Pi,numpoints=500);

Check whether region is inside or outside closed curve

> rs:=solve(subs(z=1,piz(theta))=0,theta);

Must be outside.

Worked Example 10

> restart:

> with(plots):

Define the characteristic polynomials

> rho:=theta->theta^2-1;

> sigma:=theta->2*theta;

Find the stability polynomial

> pi:=theta->rho(theta)-lambda*h*sigma(theta);

> piz:=theta->rho(theta)-z*sigma(theta);

Solve for z

> rat:=solve(piz(theta),z);

Substitute theta = e^(i*phi);

> rat1:=subs(theta=exp(I*phi),rat);

Simplify the result

> simplify(rat1);

Thus empty region of absolute stability.

1
3

_987068222

_987068306

_987068346

_987068391

_987076007

_987077559

_987078588

_987082817

_987083369

_987162273

_987162298

_987083717

_987083751

_987084048

_987083619

_987083289

_987083332

_987083016

_987082375

_987082617

_987078933

_987077861

_987078507

_987078539

_987078074

_987077607

_987077638

_987076661

_987077066

_987077503

_987076764

_987076985

_987076278

_987076514

_987076084

_987068401

_987068407

_987068412

_987068671

_987075907

_987068414

_987068409

_987068404

_987068396

_987068399

_987068394

_987068370

_987068381

_987068386

_987068388

_987068383

_987068376

_987068378

_987068373

_987068358

_987068365

_987068368

_987068363

_987068353

_987068356

_987068349

_987068326

_987068336

_987068341

_987068344

_987068339

_987068331

_987068334

_987068329

_987068316

_987068321

_987068323

_987068318

_987068311

_987068313

_987068308

_987068262

_987068285

_987068295

_987068300

_987068303

_987068298

_987068290

_987068293

_987068288

_987068275

_987068280

_987068283

_987068278

_987068272

_987068267

_987068270

_987068242

_987068252

_987068257

_987068260

_987068254

_987068247

_987068249

_987068244

_987068232

_987068237

_987068239

_987068234

_987068227

_987068229

_987068224

_987068131

_987068181

_987068201

_987068212

_987068216

_987068219

_987068214

_987068206

_987068209

_987068204

_987068191

_987068196

_987068199

_987068194

_987068186

_987068189

_987068184

_987068152

_987068169

_987068175

_987068178

_987068173

_987068159

_987068167

_987068154

_987068141

_987068147

_987068149

_987068144

_987068136

_987068139

_987068134

_987068086

_987068111

_987068121

_987068127

_987068129

_987068124

_987068116

_987068119

_987068114

_987068096

_987068104

_987068109

_987068099

_987068091

_987068094

_987068089

_979815235.unknown

_987068066

_987068076

_987068081

_987068084

_987068079

_987068071

_987068074

_987068069

_987068056

_987068061

_987068064

_987068059

_979815240.unknown

_987068051

_987068054

_987063837.doc
[image: image1.bmp]

0

R

A

_987068049

_987063725.doc

-2

0

R

A

_979815237.unknown

_979815239.unknown

_979815236.unknown

_979724519

_979815229.unknown

_979815232.unknown

_979815234.unknown

_979815231.unknown

_979815222.unknown

_979815228.unknown

_979815221.unknown

_979724399

_979724407

_979724409

_979724412

_979724404

_952870147.unknown

_955875507.unknown

_979724397

_955261057.unknown

_955875489.unknown

_955260824.unknown

_952866627.unknown

_952866909.unknown

_952866274.unknown

_952866545.unknown

